1933: High Fashion in Wings

We exchanged some polite remarks while we heaved our bags in the rack above us and sought our proper place. We just fitted in our seats together: the blonde lady in sweater and jeans at the window, I in the middle and to my right the middle aged guy in safari jacket with long hair in a ponytail… Then we underwent in silence the start of the machine and the handout of some gorgeous delicacies like peanuts wrapped in tiny little plastic bags.

picture by Monica Staalman
picture by Monica Staalman

After a while the plane had climbed to cruising height and I bent forward to the left to look out of the window. I saw an elegant upward turned wing tip against the hard blue expansion of the universe and the faintly curved horizon of our planet.
“Isn’t it amazing?”  the lady smiled at me – “how we are sitting here crunching peanuts above the world?”
“It’s stunning,” I agreed. – “I was also observing the wing tip. There seems to be a fashion nowadays to bend them upward.”
“Well dear, it’s all about saving fuel you know. The proper shape may give you an extra 3 or 4 per cent range. It all counts with the present fuel prices.” (This conversation took place some years ago).
“How can that be?”
She explained: “The wings leave behind a corkscrew of whirling air, one at each side. It is an air vortex. In a way you may say that the airplane pulls the vortex forward. The bigger the vortex, the more energy it takes from the plane. With careful design of the wing tip the engineers try to make the generation of the vortex more gradual, less violent, see?” She looked at me and smiled.

this magnificent picture is from NASA, via Wiki. See note below
this magnificent picture is from NASA, via Wiki. See note below

“Yeah,” the man to my right added -“and these vortices are bloody dangerous for the little guy who is flying behind them. You better stay out of the wake of the big ones…”
And so it turned out to be a pleasant flight for all of us. The safari chap ordered a meal and offered me his dessert because he was, as he explained, a diabetic. The lady at the window knew more about airplanes than any of us. And I told them about Willy Fiedler who had built and flown a sailplane in 1933 with vertical wing tips and no fin at the tail. I even showed them a picture on my i-phone.
They were properly impressed.

We spent the rest of the flight with pleasurable chitchat. However, as always when flying, I lost my new friends at the Luggage Claim.  If we had traveled by steamship we would probably still be in contact now.

1933: Aka Flug Stuttgart F-1 Fledermaus, design Willy Fiedler

1933: Aka Flug Stuttgart F-1 Fledermaus, design Willy Fiedler

See also:

https://earlyflightera.com/from-fledermaus-to-polaris/

http://en.wikipedia.org/wiki/Wingtip_device

http://en.wikipedia.org/wiki/Wake_turbulence where you will find:

DescriptionAirplane vortex edit.jpg (see earlier picture)
Date  4 May 1990
English: Wake Vortex Study at Wallops Island
The air flow from the wing of this agricultural plane is made visible by a technique that uses colored smoke rising from the ground. The swirl at the wingtip traces the aircraft’s wake vortex, which exerts a powerful influence on the flow field behind the plane. Because of wake vortex, the Federal Aviation Administration (FAA) requires aircraft to maintain set distances behind each other when they land. A joint NASA-FAA program aimed at boosting airport capacity, however, is aimed at determining conditions under which planes may fly closer together. NASA researchers are studying wake vortex with a variety of tools, from supercomputers, to wind tunnels, to actual flight tests in research aircraft. Their goal is to fully understand the phenomenon, then use that knowledge to create an automated system that could predict changing wake vortex conditions at airports. Pilots already know, for example, that they have to worry less about wake vortex in rough weather because windy conditions cause them to dissipate more rapidly.

Advertisements

1919: ELEMENTARY NAVIGATION FOR AIRCRAFT PILOTS

June 1919 Crowd awaiting departure of Alcock and Brown from St John's NFL
June 1919 Crowd awaiting departure of Alcock and Brown from St John’s Newfoundland  (source Wiki)

Found in the unsurpassed archives of FLIGHT magazine April 17 1919:    (http://www.flightglobal.com/pdfarchive/index.html)

  • ELEMENTARY   NAVIGATION   FOR   AIRCRAFT  PILOTS
    By A. W. BROWN

    ” A KNOWLEDGE of at least the elements of navigation is necessary to  the  pilots  of  modem  aircraft  undertaking  long  journeys. whether  over  land  or  ocean.    On  recognised  air-routes  over the  land,  his  task  will  be  made  easier  by  the  provision  of land marks   and   lighthouses,   but   over  the  ocean,   his  only guides  will   be the  wireless  telegraph,  or  the  SUN  and   stars. Wireless  telgraphy  provides  an  efficient  and  rapid  means  of locating the positions of  an aircraft during a moderately long journey,  but  its reliability  has yet  to be  proved  over greater distances, such  as  will obtain  in the  Atlantic flight.   On  the other hand,  observation  of  the sun  or stars provides a reliable and   never-failing   means  of   position-finding,   for  it   will   be seldom  indeed  that  aircraft  will  be  unable  to rise  above  any clouds obscuring the sky.    It is not necessary  for  the pilot  to know  every  detail  of  the  methods  of  navigation   in  use  on shipboard ;   aircraft  are  in no  danger  from  rocks  or  shoals, and  have  a  large  radius of  vision,  so  that  a  high  degree  of accuracy  is not essential. At the same time, the great speed of  aircraft, and  the  extent to  which  they  are affected  by  the wind, render  necessary  a system  of  navigation  by  which  the position   may  be  found   at  frequent  intervals  with  rapidity and  a minimum  of  calculation. “

  • Captain Brown
    Lieutenant A.W. Brown (1885-1948)
  • From the same splendid Archives: FLIGHT magazine, June 19, 1919:
    THE FIRST NON-STOP FLIGHT ACROSS THE ATLANTIC   WITH a British-designed and British-built aeroplane and engine, piloted by British officers, rests the honour of having made the first non-stop flight across the Atlantic. In an .Vickers-Vimy-Rolls-Royce biplane. [This] has won for them the Daily Mail prize of 10,000 pounds, the 2,000 guineas from the Ardath Tobacco Co., and 1.000 pounds from Mr. Lawrence R. Phillips for the first British subject to fly the Atlantic.….”
    MESSAGE from Capt. Alcock and Lieut. Brown to the Royal Aero Club, sent off from the wireless station at Clifden :—
    Landed at Clifden, Ireland.at 8.40 a.m., Greenwich mean-time, June 15; Vickers-Vimy Atlantic machine, leaving Newfoundland Coast 4.28 p.m. (G.M.T.), June 14. Total time 16 hours 12 minutes. Instructions awaited.”
    AS SOON AS the formalities were completed Capt. Alcock and Lieut. Brown dismantled the instruments from their machine and prepared to make for London as quickly as possible.…
    [after many celebrations in Ireland they finally arrived at the Royal Aero Club in London:]…
    They were welcomed by Gen. Holden, who said:
    “…It was one of the most remarkable feats of this century, and one which would be remembered as long as the world lasted. It was nine years since Bleriot crossed the Channel, a distance of 20 miles. Everybody thought that a magnificent exploit at the time ; but here they were welcoming men who had crossed nearly 2,000 miles.”
    Three cheers having been given for the airmen, there were repeated calls upon them to speak.Captain William Alcock 1892-1919

    Captain John William Alcock (1892-1919)

    CAPT. ALCOCK, standing on a chair, said :—
    ” I should like to thank Gen. Holden for the kind words he has said about Lieut. Brown and myself. I must say the flight has been quite straightforward. Although we had a little difficulty in keeping our course, Lieut. Brown did very well and steered a wonderful course. With regard to the flight itself all the credit is due to the machine, and particularly the engine—that is everything. If the engine went well there was nothing to prevent us getting across so long as Lieut. Brown was able to get his sights, and here we are.”
    Lieut. Brown, who also was loudly cheered, [spoke in similar vein]
    AFTERWARDS Capt. Alcock and Lieut. Brown stepped out on to the balcony, where they were greeted with loud cheers by the crowds still waiting outside, Lieut. Brown ultimately driving off to Ealing where a further reception by the local authorities was gone through.
    Meanwhile Capt.Alcock, after dinner at the Club, went to Olympia to witness the great boxing match.

    Vickers Vimy at the ready in St John’s Newfoundland, June 1919

    THE FOLLOWING is the story of the crossing as given to the Daily Mail by Capt. Alcock :
    —” WE have had a terrible journey.The wonder is we are here at all. We scarcely saw the sun or the moon or the stars. For hours we saw none of them. The fog was very dense, and at times we had to descend to within 300 ft. of the sea.For four hours the machine was covered in a sheet of ice carried by frozen sleet; at another time the fog was so dense that my speed indicator did not work, and for a few seconds it was very alarming. We looped the loop, I do believe, and did a very steep spiral. We did some very comic  “stunts,” for I have had no sense of horizon. The winds were favourable all the way : north-west and at times south-west. We said in Newfoundland we would do the trip in 6 hours, but we never thought we should. An hour and a half before we saw land we had no certain idea where we were, but we believed we were at Galway or thereabouts. Our delight in seeing Eashal Island and Turbot Island (5 miles west of Clifden) was great. People did not know who we were when we landed, and thought we were scouts on the look-out for the ‘ Vimy.’

    HOWEVER:
    We encountered no unforeseen conditions. We did not suffer from cold or exhaustion except when looking over the side ; then the sleet chewed bits out of our faces. We drank coffee and ale and ate sandwiches and chocolate.
    The only thing that upset me was to see the machine at the end get damaged. From above, the bog looked like a lovely field, but the machine sank into it up to the axle and fell over on to her nose.”

    800px-Alcock-Brown-Clifden1
    Alcock and Brown: landing in a marsh at Clifden, Ireland

    It certainly was unfortunate that what looked like a good meadow from above should have turned out to be a bog. Not only did the ” Vimy ” bury her nose in it but a R.A.F.machine which flew over from Oranmore to render assistance also came to grief. Later advices indicate that the Vickers machine is not so seriously injured as was at first supposed.

    DURING  the greater part of the flight of 1,950 miles the machine was at an average altitude of 4,000 ft. but at one
    time—about 6 a.m.—in an endeavour to get above the clouds and fog, it went up to 11,000 ft. Lieut. Brown was only
    able to take three readings for position, one from the sun, one from the moon and one from the Pole Star and Vega.
    On passing Signal Hill, Lieut. Brown set out a course for the ocean on 124 deg. compass course and at 3 a.m. from an observation on Polaris and Vega he found he was about 2 deg. south. He then set a course of 110 deg.
    Between 4 and 5 a.m. the machine ran into a very thick fog bank, and the air speed indicator jammed, through sleet freezing on it, at 90 m.p.h. It was then that Capt. Alcock thinks the machine looped, at any rate it went into a steep spiral which only ended with the machine practically on its back about 50 ft. from the water. The machine was covered with ice, and it continually became necessary to chip ice off the instruments, etc.   Capt. Alcock says that he nursed the engines all the way, and had one-third of his petrol supply left when he landed. One of the exhaust pipes blew off, but otherwise there was no trouble from the engine installation.

    The Start from St John's
    The Start from St John’s, Newfoundland

    APPARENTLY the start from St. John’s provided an anxious time for the onlookers. The machine had a hard job to get away with her heavy load. The aerodrome level was only 500 yards long, but the machine took off at 300 yards, and just managed to clear the trees and houses. However she climbed steadily if very slowly, and when she passed over the harbour a t St. John’s had reached a height of 1,000 ft.
    THE FLIGHT has shown that the Atlantic flight is practicable, but I think it should be done not with an aeroplane or seaplane, but with a flying-boat. We had plenty of reserve fuel left, using only two-thirds of our supply.”

  • 773px-Salon_de_locomotion_aerienne_1909_Grand_Palais_Paris
    First “Salon_de_Locomotion_Aerienne”_1909_Grand_Palais_Paris
  • From FLIGHT Magazine, Deceember 25, 1919:
    THE DEATH OF SIR JOHN ALCOCK
    IT is with most profound regret that we have to record the fatal accident to Sir John Alcock, which occurred on the afternoon of December 18,’ while he was engaged in taking a new Vickers machine to Paris in connection with the Salon. It appears that the machine when nearing Rouen had great difficulty in negotiating a strong wind. A farmer at Cote d’Evrard, about 25 miles north of Rouen, saw the machine come out of the fog, commence to fly unsteadily, and—it was then about 1 o’clock—it suddenly crashed to the ground.
    SIR JOHN ALCOCK  was taken from the wreck, but unfortunately there was considerable delay in getting medical assistance  as the farmhouse near where the crash occurred is out of the way. As soon as the accident was reported, doctors rushed from No. 6 British General Hospital, Rouen, but they were too late. It is probable that an enquiry will be held by the French authorities, at which the Air Ministry and Messrs. Vickers will be represented. Arrangements are being made for the conveyance of the body of Sir John Alcock to England for burial in Manchester, his native city. The death of Sir John Alcock is an irreparable loss to aviation. His great flight across the Atlantic is too fresh in the mind of readers of FLIGHT for further reference to be made to it here, while his previous work is recorded in the pages of past volumes of this paper.
  •  NOTE: After his record Atlantic flight, Sir Arthur Whitten Brown pursued a career in industry. He rejoined the RAF for a short period during the Second World War, but had to resign because of ill health. He died in his sleep in 1948.
  • [picture credits:  http://commons.wikimedia.org/wiki/Main_Page]

1930’s: LIGHT METAL WINGS II

1890: the Wing Otto Lilienthal used
ca 1890: the Organic Wing Otto Lilienthal used

When, in 1953, in my capacity of apprentice in the KLM Maintenance Service at Schiphol, I started one morning to help take off half the wing of a Douglas DC-3, I was most astonished to find that the wing of this rather famous and historic airliner had no sturdy spar in its innards, but that the metal wing cover had a seam from front to back at a position close to the engine, where it was simply bolted to the center section of the airplane.
Only recently I read that this particular construction was called ‘multi-spar’ and invented by Jack Northrop around 1930. In document 3-22(a-b)  3-22-b: Engineering Department, Douglas Aircraft Co. “Development of the Douglas Transport”, Technical Data Report SW-157A, ca. 1933-34, Folder AD-761184-05, Aircraft Technical Files, National Air and Space Museum, Washington, D.C., one can find:

“In the Douglas and Northrop types of multi-cellular wing construction, there are a multiplicity of full length span-wise stiffeners, and the fact that they have no abrupt changes or ‘breaks’ [in their extended shape] results in no concentration of stresses. With the centroids of the stiffeners located at the maximum distances from the neutral axis of the [wing] section, a most efficient structure for absorbing the bending load is obtained.”

Northrop N9MB as seen at the Air Museum Planes of Fame in Chino Ca, where it is flown regularly.
Northrop N9MB Flying Wing as seen at the Air Museum Planes of Fame in Chino Ca, where it is flown regularly.

In my interpretation this means that the outside skin of the wing (well reinforced with span-wise stiffeners) will absorb all the bending stresses and that one can dispense with heavy spars directly connected to the fuselage. The remainder of the text is too interesting to be omitted, as we, modern airline customers, only too well know how scary modern airliners sometimes flex their wings:

“In a highly stressed airplane, torsional rigidity of the wing is of paramount importance in the prevention of wing flutter at high speeds and torsional deflection of the structure must therefore be kept to an absolute minimum. When under load, there will always be some vertical deflection but this must not be excessive since a wing with large vertical deflections might cause jamming of aileron controls and by no means inspires confidence in the passengers or pilots.”

Also, vibrations can generate most annoying noise (I remember flying in the Vickers Vanguard in 1962):

“If unsupported flat metal surfaces are even moderately large, there is always a tendency for the middle of the surface to vibrate in flight, even when there is no stress. This is termed ‘oil canning’and will, in time, cause fatigue in the sheet metal and in the rivets and cause rivet heads to work and to pop off. These unsupported flat surfaces continually drum and cause a noise that cannot be completely eliminated in a cabin, because part is carried as vibration thru the structure. This is different from ‘wrinkling’of the skin. Wrinkling will be present in every metal wing with a flat metal covering taking stress. These wrinkles are deflections of the skin under load and ordinarily do not have any tendency to vibrate.”

Northrop wing with skin removed showing longitudinal stringers [from: WoodToMetal.pdf  SI 94-7718]
Northrop wing with skin removed showing longitudinal stringers [from: WoodToMetal.pdf SI 94-7718]
The report continues with more on the subject of the wing design for the early Douglas airliners:

“In determining the wing construction of the early Douglas machines single, two, three and multi spar designs were considered as well as shell type and multi-cellular designs. After a thorough investigation of all types the Northrop multi-cellular wing construction was finally decided upon. This type of structure consists of a flat skin reinforced by numerous longitudinals and ribs. The bending is taken by the combination of flat skin and full length [longitudinal] stringers. Three main flat [vertical] sheets or ‘webs’ carry the shear loads. Torsion and indirect stress are carried by the skin with frequent ribs preserving the contour and dividing the structure up into a number of small rigid boxes or cells. Since the major loads are carried in the outer surface of the wing as well as in the in the internal structure, an inspection of the exterior gives a ready indication of the structural condition. The unit stresses in the material are low and therefore the deflections are at a minimum giving a maximum in rigidity. This construction has proven to be a happy medium of those considered since it combines practically all of the advantages of each; namely, very small unsupported areas, extreme lightness for its strength and rigidity; also ease of construction, inspection, maintenance and repair.“

Douglas DC-3
Douglas DC-3

For the early Douglas airliners:

“The Northrop wing being comparatively small, it is economical to have many of the stringers run from the top to the bottom of the wing as shear webs or spars. However, when the principle is carried out on a larger scale, as in the DC-1 with its deeper wing, it is more efficient to have only three shear webs or spars. Thus it was not necessary to evolve a new type of structure but merely to adapt a time proven type to the dimensions of the DC-1.” [end of quote]

Detachable wing of DC-3
Detachable wing of DC-3

The exterior wing was fastened to the center section with a great numbers of bolts. It was my task to receive each bolt, nut and washer that became undone and secure them in a numbered hole in a plywood board. In the end there were 20 boards with a total of 652 bolt sets. My mentors /colleagues worked according to strict KLM protocol  [see the following drawing which I owe to Mr. Wim Snieder, The Hague, Holland]  and had the use of an overhead crane.

Part of the KLM protocol for dis-assembling wing of Douglas DC-3
Part of the KLM protocol for dis-assembling wing of Douglas DC-3


We finished unbolting the [half] wing by 3 pm and went for tea, delivering on our way the boards with fasteners at Testing for examination on hair cracks and corrosion.

http://www.airnieuws.nl/phregister/476/luchtvaartnieuws.html
http://www.airnieuws.nl/phregister/476/luchtvaartnieuws.html

1930’s: LIGHT METAL WINGS I

main spar box Boeing
picture source: navyaviation.tpub.com

“…The ability of sheet metal to carry an increasing load after it had begun to buckle – which in conventional structures was regarded as failure – was crucial to the development of metal airplanes. It had first been discovered in 1925 by Dr.Herbert Wagner, who was then working for the Rohrbach Metall-Flugzeugbau in Berlin, Germany, but his findings were not published until 1928 in English by NACA. Northrop’s work was done independantly. Wagner went further than Northrop in his analysis of the way in which a thin sheet of metal behaves when supported at the edges, as it is in airplane structures, and he evolved the theory of the diagonal-tension field beam to explain it. This theory, and elaborations of it, formed the basis for the development of a/c structures from the mid 1930’s onward. But it was not applied to the early Northrop airplanes or the Douglas DC-1-2-3. Northrop’s construction gave a good enough ratio of strength to weight for these airplanes, and the use of Wagner’s theory would have added to the complication and cost of design…”

The above quotation is from: Ronald E.Miller; David Sawers, “The Technical Development of Modern Aviation” (Routledge & Kegan Paul: London; 1968) p.65
In August 1933 Paul Kuhn  wrote an explanation of Wagner’s theory as NACA Technical Note No. 469 “A Summary of Design Formulas for Beams Having Thin Webs in Diagonal Tension”,  Langley Memorial Aernautical Laboratory. Washington,. A copy of this paper may be downloaded from the Herbert Wagner page on this website.

1890: THE TIN AIRSHIP

SCHWARZ, David
Born: Zalaegerszeg, Hungary, 20 December 1850
Died: Vienna, Austria, 13 January 1897
Timber merchant; airship designer
SCHWARZ, Melanie: his wife and business partner
SCHWARZ, Vera, their daughter; opera singer

SchwarzAirship FotoHungary

A tin airship was brought to flight by David and Melanie Schwarz from Agram, Dalmatia (now Zagreb, Croatia). At the end of the nineteenth century, it was they who built the first metal airship in the world. The story is well documented by now (see links below) but remains remarkable because they were the predecessors of Graf von Zeppelin, who is generally assumed to have been the first to build the historic metal steerable, lighter-than-air vehicles that now carry his name.
It is also remarkable because here a woman played a decisive role in the construction of a flying machine. (In the first half century of aviation history there have been a good number of courageous and successful female pilots, I know, however, of no other example of a woman who was involved in the business of building a flying machine, nor have I ever heard of major contributions in this field by ladies such as Mme Blériot, Mrs. Boeing or Frau Heinkel…)
scaled-209x400-David-Schwarz-und-Frauy

The husband, David, was a man of some importance, a timber merchant who every year spent long months in the forest, overseeing logging operations. His desire was for a magical, mighty machine that would be able to lift the cumbersome trunks of trees straight up and out of the hilly terrain. His thoughts materialized into the design of a rather large metal cylinder, filled with hydrogen gas. The pressure inside the vessel would equal the outside air, so as to avoid extreme forces on the shell. In order to be able to levitate, the total construction, plus its load, would have to be lighter than the air it displaced, according to the Law of Archimedes.
Being an avid reader of technical books, he had learned of the miraculous metal aluminium (or aluminum in English speaking countries), known since 1825 as silver-from-clay. As Wikipedia states: “Aluminium is the third most abundant element (after oxygen and silicon), and the most abundant metal in the Earth’s crust.” Yet it proved extremely hard to extract from its host, the ore bauxite. Indeed, the first small quantities produced were so costly that they were used only for art objects and expensive cutlery at the court of Napoleon III.

404px-Eros-piccadilly-circusX
Aluminium Eros at Piccadilly Circus London, ca. 1895

Production on an indutrial scale had to wait until in 1886, when Charles Martin Hall in Ohio, USA, and Paul Héroult in France invented the electrolytic process of refining aluminium at practically the same time, using an electro-oven.
       This development was only possible after the perfection by
George Westinghouse (and predecessors) of the electrical transformer, a device that could deliver to the oven extremely large currents at low voltage. The oven required a vast amount of electric power, which had become available on an industrial scale after Man had learned how to build hydro-electric power stations (for instance at Niagara Falls, 1895 and Neuhausen Switzerland, 1888). The production of relatively cheap aluminum became from then on feasible and Schwarz’s dream came into the realm of reality.
It goes without saying that in order to become truly dirigible, his tin cylinder would also need a motor with propeller and rudder (although for lifting tree trunks out of the woods a cable balloon might have served the purpose). The practical, portable combustion engine was put on the market around 1885 by Gottlieb Daimler and Carl Benz.
Summing up, we may say that the light-weight metal steerable airship could not have been built before 1890 and that Schwarz’s invention represented the cutting edge of technology.
Schwarz first approached the Austria-Hungary War Ministry, but received little interest in his ideas. He found more resonance in Russia and a first attempt by him to build a metal airship was made in St.Petersburg. When these attempts failed Schwarz returned to Zagreb.

Zagreb Trg1880

In 1894 he got involved with the German entrepreneur Carl Berg from Ludenscheid, Westfalen. Carl’s firm specialized in the production of aluminum flat sheet and rolled shapes with various profiles. The factory obtained raw metal from the first European aluminium smelter in Neuhausen, Switzerland (1888), later known as Alusuisse. Berg saw great potential in Schwarz’s project and decided to help him transform ideas into hard reality. In fact, it was Berg’s engineers who made the definitive calculations and ultimate design for the airship. On paper it looked sort of like a giant spray can lying on its side: a cylinder with a flat bottom and a conical point. An open gondola hanging from the cylinder would hold the pilot, the Daimler engine (16 hp) and the steering controls. Via belts the engine drove no less than four propellers, one of them a horizontal one to aid levitation. According to one account the ship measured 38 meters (125 ft) from tip to tail; its diameter was 12 meters (40 ft). The aluminium skin was 0.2 mm thick (equal to four sheets of kitchen aluminium foil) and riveted air tight on a skeleton of thirteen aluminium hoops and longerons of angle profile. Important: at the highest point of the cylinder was a hydrogen release valve that could be opened from the gondola.
Berg and Schwarz came to the agreement that Berg would assume all further costs. He would produce the parts that were to be assembled under the supervision of Schwarz at Tempelhof Airport in Berlin.  It took till the summer of 1896 to get the metal airship ready. Then it was discovered, during the last preparations for the first flight, that the so-called hydrogen gas supplied by a German chemical factory was not of sufficient purity; its specific weight was not low enough in comparison with the air it was displacing and so the loaded airship would not float upwards. Further tests had to be postponed.

Ehrengraeberjuedx
Central Cemetery of Vienna – Israelite part

To the great dismay of his family and business associates, David Schwarz was hit by a fatal stroke while in Vienna on the 13th of January, 1897. The Jewish community of the city of Vienna gave him a funeral with all due honor and a monument at the Zentralfriedhof of the city.
Carl Berg feared he was now stuck with a bizarre and rather fantastic-looking aluminium cylinder whose inventor and promoter had taken his leave forever. However, high-quality hydrogen gas was delivered in Berlin at that same day and Melanie Schwarz came to the rescue. Contemporary sources state that she was a “delicate yet unbelievably energetic lady”. Apart from caring for her family she had always assisted David in his endeavors. Everybody was surprised when she took charge of the project. The preparations for the first flight were resumed resolutely. She engaged a Mr. Jagels, a military man who had, as he said, some experience in ballooning and who was prepared to wager his life for a modest compensation .

Berlin_Tempelhofer_Feld_1907 (1)
Berlin: Tempelhof Field

Filled with almost pure hydrogen gas, the tin cylinder finally elevated itself from German soil in the presence of a vast crowd on the 3rd of November, 1897. A hard and cold wind blew from the east. Jagels had practiced ballooning under simple circumstances; now it was demanded of him to observe a multitude of variables such as wind, altitude, obstacles, engine revs and desired course, while at the same time handling the engine, the drive belts and the rudders.
The ship did lift off, but thereafter things went wrong. The drive belts jumped from their wheels, the propulsion failed and the little ship was carried off, out of control, by relentless and swirling winds to a height of more than four hundred meters. Caught in a basket and at the mercy of the elements, this height is frightening to even the most obliging person and it is understandable that Jagels did the only thing that he could possibly think of: he yanked hard at the cord that opened the safety valve. Unfortunately, just like Blanchard ninety years earlier, he let too much of the good gas escape. The ship, suddenly having lost its buoyant force, dove down and, zigzagging like a punctured child’s balloon, struck the earth at an oblique angle. Fortunately, the skipper was able to jump just before the metal cylinder flattened the gondola against the ground and so saved his dear life.
Melanie showed a remarkably modern talent for public relations. She dispatched the following telex to Carl Berg:
“HYDROGEN FILLING AND LIFT OFF  FULLY SUCCESSFUL” STOP
“SHIP ATTAINED 1000 FT MADE 2 TURNS” STOP
“DRIVE BELT PROBLEM CAUSED PREMATURE LANDING” STOP
“SHIP DAMAGED” STOP
“JAGELS UNHURT“ STOP
“MELANIE SCHWARZ“  STOP

idem1897

Unfortunately, this diplomatic account of affairs could not withhold Berg from withdrawing from the project. He had the remnants of the ship melted. (One of the curious properties of the new metal was that it could be completely recycled.)
Melanie appeared one more time on the stage of history when a certain Count von Zeppelin approached Carl Berg to embark with him on a new project for a metal airship. “This ship will be completely different. It will have an exo-skeleton of aluminum girders that will be covered by  watertight fabric. The gas will be held inside in a row of conventional balloon bags.” Berg was highly interested but felt himself tied by contract to the Schwarz estate. To nullify the obligations, the following proposal was made to the heirs: during a three-year period the Schwarzes would be paid the equivalent of 15,000 Reichsmark, with a royalty of 10,000 Reichsmark for every airship delivered, with a maximum of thirty airships. To their surprise, the generous offer was turned down by the guardian of the Schwarz children, Herr Czillac from Fiume. This male meddling infuriated Melanie and she personally made an appearance at Berg’s headquarters. She was willing to tear up the contract for an immediate payment of 15,000 Reichsmark. “Cash in hand,” she must have reasoned, “that silly old fool Zeppelin won’t ever amount to anything!”
In hindsight, this is a shame, of course, because the thirty airships mentioned in the proposal would already be built by Graf von Zeppelin before 1915, and the previously mentioned three hundred thousand Reichsmark would have been just the sort of money that a mother-alone-with-children could have put to great use.

Epilogue

800px-Wien_-_Staatsoper_(2)
Vienna Staatsopera

All together we may safely state that Melanie did well in the end. Her daughter Vera Schwarz (188?-1964) became with dedicated maternal care a famous soprano, appearing in all the major opera houses of Europe and the United States, often together with Richard Tauber. From 1938 to 1948 she lived in exile in the U.S. Upon her return to Vienna she became a sought-after teacher, giving well attended master classes.
In 2011 a street in Vienna’s 23rd district was named Vera-Schwarz-Gasse in her honour.

Schwarz

http://austria-forum.org/af/Wissenssammlungen/Biographien/Schwarz,%20Davidhttp://www.zeit.de/wissen/geschichte/indexhttp://www.zeit.de/2013/34/zeppelin-erfindung (david schwarz)http://www.britannica.com/EBchecked/topic/1350805/history-of-technology/10452/Petroleumhttp://de.wikipedia.org/wiki/David_Schwarz:

http://en.wikipedia.org/wiki/David_Schwarz_(aviation_inventor)
http://en.wikipedia.org/wiki/Vera_Schwarz

ARENSE, J.L. : Zeppelins en de Luchtscheepvaart”
De Bataafsche Leeuw: Amsterdam
1990   ISBN 90-6707-250-8

“The Metal Airship” article in: Aviation Enthusiast, July 1992

FOR BOOKS ON AIRSHIPS:
atta12e9
http://www.lindbergh-aviation.de/

1936: INSIDE THE ZEPPELIN

Luftschiff Hindenburg (LZ-129), Speisesaal

With some disappointment Carla looked through the downward slanting large windows: there was still nothing more to see than grey fog, a pea soup that seemed to touch the windows and that moved past with considerable speed. Of course she had it wrong, she realized, the ship was moving forward at one hundred twentyfive kilometer per hour and it was the fog that was stationary.

They had departed from Frankfurt yesterday and that had been an exciting experience. The ship had been moored to the landing tower at a height of about thirty meters and hundreds of people had swarmed below it. Commands and shrill whistle signals could be heard, hawsers were cast off, even a ship’s bell was sounded. She had heard a steady discharge of water – that was ballast, she was told. Then the ship had moved slowly away from the mast, going backward and upward in a stately manner, while the crowd below was cheering and waving. She had felt a shudder going through the mighty structure surrounding her, followed by a steady vibration when the engines took hold of the airship and started to propel it forward. The “Hindenburg” had freed itself from the airport departure site and had at first flown low over the city until it had begun to rise gradually into the clouds.

800px-Zeppelin_Postkarte_1936_a
THE HINDENBURG ON A TRIAL FLIGHT IN 1936

Obviously that’s where they still were at present. Carla had slept very well and after having been awakened by a light knock on the door, she had dressed quickly in order to hasten to the dining room with almost childlike impatience. Coming from the ladies’ rest room on the lower deck, it struck her that the corridor was sloping slightly downward toward the rear and that the ship was rolling and pitching lightly. Much gentler than an ocean liner, but, as she moved towards the tail, the movement became more noticeable. The engines hummed far away, not loudly and not bothersome, but rather emanating a feeling of security.

The breakfast room was empty except for two well-dressed gentlemen, most likely business men on their way to Brazil. As Carla walked past them to the large picture window at port, she smiled and exchanged a friendly “grüß Gott”. She had been hoping for a cheerful sunny morning, but outside there was only grayness. All the same, she peered out intently for some minutes as if to grasp the true meaning of the passing cloud patches.

She could not help overhearing the conversation of the two gentlemen. It also concerned the clouds.
“I think we’ll probably stay in the clouds today as long as possible,” said the larger of the two, a military looking man. “In that way the Captain saves his hydrogen gas. See, we are heavily loaded – the fuel tanks are almost completely full – we are near maximum weight. If we get out over the clouds into the sun, the gas cells will heat, the gas expands to maximum and it could well be that the safety valves will bleed it off. But, see, we can’t afford that – we need all the gas to stay afloat, especially during the night. That’s why we are staying in the clouds now. Do you want some more coffee?”
“Yes, please.”
“There is one more thing that shows that we are heavily loaded: we’re cruising with the nose slightly up. That means the forward speed gives the ship some lift on its hull, just like the wing of an airplane. If we were to fly horizontally, with static buoyancy, we might loose height gradually.”
“We could jettison ballast?”
“Yes, we could, that’s true, but we are at the beginning of the journey and the Capitan must make best use of his resources – we may get into a situation later where he needs the ballast badly. Don’t forget that the ship gets slowly lighter all the time because it uses its fuel. In a while we’ll get to a warm country with a much lighter ship. You wouldn’t want to be in a situation where you couldn’t descend because you were too light, would you now? Or where you kept going higher and higher? Haha!”

Carla felt a bit of a shiver – there was much more involved in this type of travel than she had ever suspected.
“But in that case he would valve off the gas, wouldn’t he?”
“Of course, I was only joking. But the essence is to maintain control of the airship in an optimal way by preserving as much as possible of both gas and ballast. Remember, we can use the resources – fuel, gas and ballast – only once. When they’re gone, they’re gone for ever. That’s to say, until we can land.”
“Same with water?”
“Less so. We can collect rainwater and condensation on the hull and replenish our stores. But that takes time.”

LZ_129_Hindenburg_interior

The weather outside cleared somewhat. The pea soup became less dense and wispier. Occasionally there were even clear spaces between the shreds of fog. The men behind her continued with their breakfast and the expert on zeppelin travel volunteered more information:
“On the other hand, of course it is advantageous to fly as high as possible.”
“Because there the air is less dense?”
“Yes, the air is thinner; the ship has less drag. That means less effort to propel it. So we can make the same speed with less fuel, or we can go faster with the same fuel – so we arrive earlier in Rio.”
“So, we should fly as high as possible?”
“Yes, but there are limits. First of all we get trouble breathing. Especially the older passengers may not find it very comfortable at two thousand meter. The engines also will have their problems; they deliver less power per liter of fuel. Then there is the cold, mind you. At two thousand meter it may start to freeze. So the ship has to be heated, for the passengers first of all, and that takes fuel again…”
“Yes, but if there are no clouds at two thousand meters, the sun will heat us. You said just now that the gas would get warm …”
“Indeed, by radiation, but the air temperature is low and the air will have to be heated!”
“What fuel do we use?”
‘Diesel, we have four twelve hundred horse power diesel engines.”

Carla no longer followed the conversation. Typical boy’s talk. Men were awful… They could go on and on about something technical. She was more interested in the clouds. They were unmistakably becoming less and less. Occasionally she could even see a small patch of ocean surface. Ripples in a grey sheet: waves seen from a great height. It was only for a moment that she could see the sea and the thought flashed through her that somebody on a ship could have seen the Hindenburg. She imagined being on a ship underneath an endless cover of clouds and then suddenly in an opening, an airship appears and is gone again immediately. A strange thought. Would there have been somebody, there at sea? Or were they the only ones present in this space: a surreal dining room at five hundred meters, surrounded by clouds? Was she dreaming? Did the sea down there really exist? And had the zeppelin been visible from the sea even if nobody had been there to see it? Was there a reality outside the things that you saw yourself?

Fortunately, at that moment more passengers entered the room and a friendly elderly couple invited her to join them. They talked about their destinations and where they came from and soon the disturbing thoughts were gone.

————————————–
ADDENDUM

Luftschiff Zeppelin LZ-129 ‘Hindenburg’ was the largest operational passenger airship between the wars in Germany. It had a length of 800 ft and a diameter of 135 ft.
Starting March 1936, it flew a regular airservice between Germany and South (later also North) America, until it was destroyed by fire
in May 1937 at Lakehurst, New Jersey, USA. In 1936, 17 round trips were made across the Atlantic, carrying an average of 65 passengers with a crew of 56. In that season the ship flew 192,000 miles, carrying more than 2000 passengers and 160 tons of freight and mail. A westward trip
took an averige of 65 hours depending on weather conditions; eastward it took ten hours less. The one way fare to the USA amounted to $400.–.

for more reading, see this most interesting Wiki site:
http://en.wikipedia.org/wiki/Lz-129

atta12e9

for books on airships:
www.Lindbergh-aviation.de

2014: INSIDE FLYING MACHINES

167-united-787-return-to-houston-economy-class_23745

It may be surprising,
but the confrontation
with Real aeroplanes
often comes as a shock.
To begin with, we shudder at jet’s
Sudden Roar.
Aeroplanes turn out to be Noisy.
(They never were so
in our picture books or imagination).

Next, we resent being
Herded
into a Wide-Body fuselage
for transport to our Exotic Holiday.
The very act of embarking the aircraft,
being inside,
changes our feelings towards it.

We can no longer,
with our eyes,
caress
its smooth outside shape.
We can no longer dream
how it will traverse the sky
after a graceful start.

In our imagination
the aeroplane
is the perfect Man-Made object.
Imita­ting a living being,
it almost has come to life itself.

However,
Inside
of this almost-living being,
it turns out to be stuffy,smelly,
oppres­sive,
almost nauseating.

The interior flying machine
stacks its passengers
into a cramped,
crowded space.
Starved, strapped, sedated,
we are offered at most
a narrow glimpse of clouds,
earth and sky.

800px-Bird_in_flight_wings_spread

 Actually,
we aeroplane-lovers
are Bird-lovers.

We fancy birds,
we admire birds,
we wonder how they fly.
We would like to Be birds,
but we don’t necessarily
want to be
Inside.

airplane construction interbellum Rohrbach