Tag Archives: famous people

1994: MY PRIVATE HISTORY OF THE DAVIS-WING II

In 1994 I bought a handsome collection of short biographies of aviation pioneers, from which I quote:

The Wing Man: David R. Davis – 1894(?) – 1972  [1]

“David Davis grew up as a sickly child who was advised to spend as much time outdoors as possible. While a young man, he was sent on an educational camping trip with a tutor, during which they retraced the route of Lewis and Clark. [2]   When he was fifteen he moved to California with his mother. Their home was near Los Angeles where [aviation pioneer] Glenn Martin was experimenting and Davis would often help Martin ground-handle his plane.
“In 1911 Davis made his first flight and four years later he bought his first aeroplane. During World War I he served in the Army.  After the war he became a barnstormer before joining with Donald Douglas in 1920 to start the Davis-Douglas Airplane Company  [Davis put up $40,000.] This venture failed and Davis was completely wiped out with the Stock Market crash in 1929.”

About the period with Douglas, Oliver E. Allen writes in “The Airline Builders“:[3]

“…In 1920 Douglas was ready to start his own firm. He went to Southern California with less than $1000 because he felt at home there and one could fly there all year. It was however a bad time to start an aircraft factory anywhere. Douglas tried to borrow money everywhere, until a friend introduced him to David R. Davis, a well to do young man from California who wanted to have an airplane built for a non-stop transcontinental flight.”

04-02366-donald-w-douglas-and-david-r-davis-formed-davis-dou

“The two men founded the Davis-Douglas Co. and rented an office. Afterwards they moved to a loft over a lumberyard in Los Angeles. There they constructed the Cloudster. This airplane had one unique property: it was the first plane that could transport a load greater than its own weight.  During the first [attempt of the] transcontinental flight the [Liberty] engine broke down and Davis had to crash land at Fort Bliss (Texas). In 1923, when he was ready for a second attempt, two army officers had already completed the non-stop flight with a Fokker T2. Davis lost interest and withdrew from the company…”

Quoting again from Longyard:

“…Davis took an everyday job to support his family but he never gave up his penchant for airplanes. He tried to develop a variable pitch propeller, but lack of funds hampered his efforts. By the late 1930s, he had developed a theory of aerofoils that he thought could greatly increase the efficiency of wings. He tested model sections mounted on a borrowed car.
Through Walter Brookins, he was able to convince Reuben Fleet [of Consolidated Aircraft] of the possibilities inherent in his new wing. Fleet had a wing section tested at the California Institute of Technology where the scientists said the wing was an impossible 102 percent efficient. They disassembled their windtunnel to see what was wrong! Fleet ordered that his next flying boat be built with a ‘Davis Wing’ – a million dollar gamble. In 1939 this plane [the Corregidor] was flown by an amazed test pilot who said it handled like a fighter.”

Altogether not a very complete picture of what exactly went on with the Davis-wing. Remember this was the time before Google, Internet and Wiki. In those days one had to search in libraries and magazines. So imagine what a surprise it was when one day in 1996 I found a letter in the mail from my old friend of Canadian days John Galipeau, whom I had not seen for thirty years. He had heard of my interest in the Davis wing and he had visited the San Diego Air & Space Museum, where he had found fresh information for me, such as the photograph of two of the principal actors shown above: Donald Douglas and David R. Davis.

to be continued…

[0] Picture of Cloudster is shown at the top of the article. Note the big belly needed to store all the fuel.            Pic credit: Wiki
[1] The collection of short biographies is from: William H. Longyard, “Who’s Who in Aviation History“, Shrewsbury, Airlife, 1994.
[2]  Two famous explorers, who were sent out by Thomas Jefferson in 1803 to find a route from St.Louis to the Pacific Coast.
[3] Chicago, Time/Life, 1981, here translated from the Dutch edition.

Advertisements

1985: MY PRIVATE HISTORY OF THE DAVIS-WING

I got interested (again) in aviation history when I bought thirty years ago at a jumble sale an old scrap book with photographs of the Dornier Do-X. The Germans have always been very proud of that boat, but of course in 1932 it failed dramatically where five years earlier Charles Lindbergh had succeeded without apparent effort: a simple non-stop jump across the Atlantic. I wondered why this could be so and started to read (+ collect) books about 1930-flying boats and airliners. What were the factors that determined their long-range performance? How fascinating that era was!
Next I got into a correspondence with a certain Don Middleton, a British aviation journalist, who had stated in an English monthly that the amazing long range of the Consolidated Catalina patrol boat was due to its ‘Davis-wing’. Based on general data from Jane’s ‘Fighting Aircraft of WWII’ edition I undertook to compare four contemporary transport planes: the Douglas DC-3 and DC-4, and the Consolidated Catalina and B-24 Liberator, and proved to him that Catalina’s extreme performance was based on two factors: its light construction (empty weight approximately 50% of take-off weight) and its slow cruising speed, which was right at the optimal economic flight point (maximum  CL/CD ratio). The other three planes, for commercial or operational reasons, all cruised faster than their most economic speed and as a consequence had a comparatively shorter range. The Cats were slow, real slow, to the exasperation of their crews. However, slowness could also be advantageous: they were able to shield the ships they were escorting by circling tightly around them, outmaneuvering in this way attacking German and Japanese aircraft that were much faster.

The PBY Catalina had no Davis-wing and I think I proved it, but Middleton never entered into a serious discussion and suggested I submit my paper to the Royal Aeronautical Society, which of course was a bit much. Later on I learned he disliked smart asses like me who argued from theory: he had been a skilled aircraft worker at de Havillands himself and a RAF engineer during the war.
Of course the Davis-wing was used on the B-24 Liberator. Next blogs will summarize what I know about it. The inventor, David R. Davis, [1] appeals to me because he was obviously a maverick: he worked outside the official circuits of Universities and NACA. Apparently he had a mind of his own. As a result however, descriptions of his work are hard to find in official literature (like Abbott & Doenhoff; maybe Durand mentions him?). Apparently his wing had extreme low drag at small angles of attack (laminar flow?), which is remarkable, because long range (like Catalina’s) is usually associated with low engine power and therefore relative large angles of attack. So there were things here which were not quite clear to me. I wanted to know more about the wing profile: it must have been very thin with maximum depth near the middle of the chord. How can thin wings be made strong enough for long spans? This was the state of my comprehension until I found more information.

[1] A word of warning: there have been other aviators of fame with the name Davis. So is our man not to be confused with the unfortunate pilot Noel Guy Davis, who crashed short after take-off for a trans-Atlantic flight in 1927, aboard a Keystone Pathfinder (N-X179) airplane called American Legion.
[2] picture: PBY5 Catalina; credit: Wiki.

1934: SCHATZKI REVISITED

In the 1930’s the above traffic situation occurred frequently in the canals of Amsterdam: the Fokker Aircraft factory was located in Amsterdam North, a residential and industrial section of town without an airfield, while Schiphol Airport was to the south of the city, on the bottom of a reclaimed lake. For flight tests newly built Fokkers had to be transported through the wondrous and winding canals of the old city. Sometimes, after heavy rainfall, Schiphol was too marshy and flight tests had to be relocated to Welschap, near Eindhoven, a distance of 70 miles or so to the south.

You can read about the tests at Welschap in the revised ‘album’ of Erich Schatzki’s life, when you click here:  alifeofflight2.pdf

Erich Schatzki loved the new country that he had settled in for a short interval of time. Relentlessly moved on by the unfolding of history, events took him eventually to the United States and then to Israel and back again to the USA – like a pendulum, going multiple times back and forth.

For the new data which I was able to add to the earlier description of Schatzki’s life, I am indebted to my old friend Wim Snieder, the writer of the only comprehensive bibliography of Dutch aviation history: “In Vogelvlucht” / Geannoteerde bibliografie over de Nederlandse luchtvaart, vanaf 1784. Uitgever; Canaletto/Repro Holland; 486 pages, ISBN 9789064697340

1939: Erich Schatzki Album

Fokker_g1

As a little boy in Holland I was enraptured by the original shape of the Fokker G-1 fighting plane of 1939. A few years later I became a (small) close witness to the atrocities of the war, as some of my schoolmates and good neighbors in the street where I lived in Amsterdam were deported because they were Jewish. (They never returned.)
Dr.Erich Schatzki

While living now in California and enjoying my own ‘Indian Summer’, I found on the web the designer of the G-1, Erich Schatzki. I also learned that he was a Jewish exile and that he and his family had been on the run for the Nazi’s since 1934. I set out to find more facts about his life.
I have collected these in an ‘Album’, a collection of factual items and a description of some of the fascinating people that he met in his long, adventurous life.

I have added my findings in a new file on my website today. If anybody can tell me more, or if somebody wants to correct an error, please leave a note!

 

1670: METAL SPHERES IN THE SKY

800px-Magdeburg
[from Wikipedia]
The ancient peoples of Babylon and Egypt have presented us with many valuable scientific and technical innovations. In the fields of arithmetic, geometry and astronomy they made major contributions and in the art of erecting barehanded buildings from huge stone blocks they are unsurpassed to this day. But as far as I know they did not get involved in the theory of gases, nor did they build machines to conquer the sky.

The history of the balloon starts with Greece, where Archimedes (287-212 B.C.) formulated the principles of sinking, rising and floating and Hero (20? A.D.) invented the plunger type water pump. In our own seventeenth century there was Torricelli (1608-1647), who demonstrated the phenomenon of a vacuum by upending a long glass tube filled with mercury and Von Guericke (1602-1686) who adapted Hero’s pump to pump air. In this way he could evacuate his famous Magdeburger Half Spheres and demonstrate the surprising force exerted by the pressure of the column of air above us.

One result of all these experiments with vacuum was that the idea that air had weight became generally accepted.
Magdeburger balls emptied of their inside air were somewhat lighter than air-filled ones. Giovanni Alfonso Borelli (1608-1679, see my previous post), Italian physiologist, mathematician and friend of Galileo, speculated that if one would make very light spheres, for instance out of very thin copper plate and draw all the air from their insides, they would float in the air according to the law of Archimedes. Unfortunately spheres formed out of very thin plate would not be able to withstand the atmospheric pressure from outside and would be flattened by it.

Flying_boat
[from Wikipedia]
Undaunted by considerations like these the Jesuit father Lana de Terzi (1631-1687), who longed to go to heaven, made the same fatal flaw in his thinking. In his book ‘Prodromo Overo Saggio de Alcune’ of 1670 he describes a true ship of the air, an open gondola lifted by four copper spheres of almost 25 feet diameter that have no air inside. The ship is drawn forward by a span of twelve geese. De Lana was probably the first to be concerned that this invention, like all other man made instruments, could be misused for war. An airship such as this would make war even more brutal and horrifying than de Lana had experienced in his own lifetime. He therefore concluded that God would prevent the construction of this sort weapons. He certainly was he a naive optimist.

Of course his idea of the twelve geese was endearing. In flight it must have looked somewhat like the picture hereafter, which shows the Canadian Joseph Duff flying southward with a flock of cranes that have as much trust in their pilot as de Lana had in his god.

whoopcrane
[from link below]
Do read:

https://centennialjournalism.wordpress.com/2012/06/06/operation-migration-founder-still-flying-to-save-endangered-birds-whooping-cranes-not-canada-geese/

July 2015: CALGARY LAWN CHAIR BALLOONS

CalgaryLawnChair2015

On Sunday July 5th, while enjoying my time at the beach, Daniel Boria, age 26, was floating over the Calgary stampede grounds carried aloft  by 110 helium filled balloons while sitting in a lawn chair.
Our fascination with balloons goes back a long time, to Francisco Lana-Terzi [1631-1687] or maybe even earlier, to Giovanni Alfonso Borelli as decribed by that famous science (fiction) writer Isaac Asimov [1920-1992]:[1]

220px-Giovanni_Alfonso_Borelli

BORELLI,  Giovanni Alfonso
Italian mathematician and physiologist
Born: Naples, June 28, 1608
Died: Rome, December 31, 1679

“Borelli was a professor of mathematics and a friend of Galileo. His life, though not characterized by the controversies of his great friend, was not entirely smooth. In 1674 he had to leave Messina, the Sicilian city in which he was then teaching, and retire to Rome, where he remained under the protection of Chris­tina, former queen of Sweden. (This was the queen whose eccentric habits had brought on the death of Descartes [1596-1650]. She abdicted in 1654 and was received into the Roman Catholic Church the following year, after which she settled in Rome.)

Borelli corrected some of Galileo’s overconservation. Galileo [1564-1642] had neglected Kepler’s [1571-1630] elliptical or­bits, but now Horrocks [1618-1641] had extended them even to the moon, and Borelli rescued the ellipses, publici­zing and popularizing them.

He tried to extend the vague notions of Galileo and Kepler concerning the attractive forces between the sun and the planets, but was not successful. He tried also to account for the motion of Jupiter’s satellites by postulating an attractive force for Jupiter as well as for the sun. In this he (and Horrocks also at about this time) made a tentative step in the direction of universal gravitation, but the theory had to wait a generation for Newton [1642-1726].

Borelli suggested (under pseudonym) that comets tra­velled in parabolic orbits, passing through the solar system once and never returning. (The parabola, like the ellipse, was first studied by Apollonius [261-190 BC]. A parabola is an open curve something like a hairpin.) Any body following a parabolic path would approach the sun from infinite space, round it, and recede forever. Such an orbit would explain the erratic behavior of comets, without completely disrupting the orderliness of the universe.

Borelli understood the principle of the balloon, pointing out that a hollow copper sphere would be buoyant when evacuated, if it were thin enough, but that it would then collapse under air pressure.
It did not occur to him that collapse could be avoided if a lighter-than-air gas were used to fill the sphere as, in essence, the Montgolfier brothers [1740-1810 and 1745-1799] were to do a century and a half later.”
—————–
[1] Isac Asimov: Biographical Encoclopedia of Science and Technology (chronically ordered); 805 p. Avon Books, 1976

1934: A PLANE IS NOT A SHIP

Revolutionary Sikorsky S-42 (1934)
Revolutionary Sikorsky S-42 (1934)

Sikorsky’s factory in Stratford Connecticut completed its first S-42 airliner/flying boat in March 1934 and Igor Sikorsky took at the earliest opportunity the mail boat to Southampton to promote his revolutionary clean looking flying machine in the Old World. His first stop was London where he delivered a glowing lecture with epidiascope projections to the Royal Aeronautical Society. His new ship was fast and it could move passengers far. In fact in the years that followed, Pan American Airways bought ten of them and used them to conquer the Pacific Ocean. The British aviation bigwigs and tech wizards listened in polite astonishment. Igor gave a glowing account of his breakthrough in the design dilemmas that had for thirty years produced only ugly-looking mechanical flying things with a multitude of wings, struts and wires.

Ugly Short S-14 Sarafand (1932)
Ugly Short S-14 Sarafand (1932)

Sikorsky had now created a roomy airplane with a single sleek small wing and four beautifully mounted engines. It carried 12 passengers with ease over 2000 miles and it could alight gently at 65 mph on the tops of the rolling waves. Its cruising speed was 160 miles per hour and Igor repeatedly pointed out how this speed in combination with the high wing load made for a comfortable ride, relatively insensitive to wind gusts and sudden vertical up and down air drafts.

IGOR I. SIKORSKY (1889-1972)IGOR I. SIKORSKY    (1889-1972)

The British listened with polite amazement and suppressed skepticism. “We don’t really need speed”, said Mr. Horace Short, the builder of England’s famous double-breasted multi-wing lumbering patrol boats during the discussion afterwards.”When we need speed we’ll have Supermarine win the Schneider Cup or Messrs. de Havilland will build the Comet for winning the Melbourne race. We focus on other things.” He meant safety, a slow landing speed. And it must be said, his boats had an enviable safety record (but could not cross the ocean).
Mr. M.Langley inquired whether Mr. Sikorsky had used Imperial or US Gallons in his specifications. He apparently couldn’t believe the figures and the British ones were a good deal larger.
As to performance, Mr. W.O. Manning conceded frankly that Mr. Sikorsky had put the flying boats used by Imperial Airways completely out of date. He then proceeded to produce a global new design on the lines of the S-42 and showed its superiority.
Major R.E. Penney thought the secret of Mr. S.’s boat could be found in the enormous amount of detail work, the fairing up of the details so that the combined resistances had been reduced to an absolute minimum.

Phoebastria_albatrus (picture: Wiki)
Phoebastria_albatrus (picture: Wiki)

Mr. Scott-Hall mentioned in passing that albatrosses (the birds) had a large wing load but they had trouble getting themselves up in the air. And so there was a lot of back and forth talk about speed and small wings.
Until finally Major F. Green hit on the real issue: “Let’s not overlook the fact that a small wing saves a substantial amount of weight”. And here was of course the quintessence: instead of carrying wing, the airplane could now carry fuel and people. But even Igor did not seem to quite grasp the point. He came back to the subject of speed. “There is no doubt”, he stated, “that planes of great weight, capable of non-stop ocean flights, cruising between 150 to 200 miles per hour, can be designed at this time and be ready for service within two and a half to three years. Greater cruising speeds are possible, but the size of the earth does not warrant greater speeds. The progress of air transportation will benefit more if designers will give more attention to increased passenger comfort and ways and means to lower transportation costs rather than greater speed.”
Well now, would that really be possible Mr. Sikorsky? Are speed and economics independent quantities?
A cat is not a dog and a plane is not a ship.

for the full text of Igor Sikorsky’s lecture, click:  https://ritstaalman.files.wordpress.com/2014/12/sikorskya.pdf
see also Part III of Early Atlantic Airliners:  ATLAIRpart3
for books on the conquest of the Atlantic by air: http://www.Lindbergh-aviation.de atta12e9