Tag Archives: air travel

2017: United Revisited

InsideFlyingMachine2

It may be surprising,
but the confrontation
with Real aeroplanes
often comes as a shock.
To begin with, we shudder at jet’s
Sudden Roar.
Aeroplanes turn out to be Noisy.
(They never were so
in our picture books or imagination).

Next, we resent being
Herded
into a Wide-Body fuselage
for transport to our Exotic Holiday.
The very act of embarking the aircraft,
being inside,
changes our feelings towards it.

We can no longer,
with our eyes,
caress
its smooth outside shape.
We can no longer dream
how it will traverse the sky
after a graceful start.

In our imagination
the aeroplane
is the perfect Man-Made object.
Imita­ting a living being,
it almost has come to life itself.

However,
Inside
of this almost-living being,
it turns out to be stuffy, smelly,
oppres­sive,
almost nauseating.

The interior flying machine
stacks its passengers
into a cramped,
crowded space.
Starved, strapped, sedated,
we are offered at most
a narrow glimpse of clouds,
earth and sky.

800px-Bird_in_flight_wings_spread

Actually,
we aeroplane-lovers
are Bird-lovers.

We fancy birds,
we admire birds,
we wonder how they fly.
We would like to Be birds,
but we don’t necessarily
want to be
Inside.


note: this blog was first published October 24, 2014
Since then the situation inside airliners has deteriorated.
Last year United Airlines made a profit of more than 2 billion dollars.

Advertisements

2004: Boeing 747-206 Last Journey

Don't be shy 747, why sneak thru the canals at night? Ah, you're missing your wings....
Don’t be shy 747, why sneak thru the canals at night?     Oi, you’re missing your wings….

70 years after the previous photograph was taken, this
Boeing 747-206, the KLM airliner PH-BUK Louis Breguet , navigated the nightly waters of Amsterdam on its way to Aviodrome, the national aviation museum at Lelystad. This particular airplane, with combined passenger/cargo capacity, had flown before retirement
98 million kilometers during more than 100,000 hours of flight.

Restored to its full glory (complete with tail, wings and engines)
Louis Breguet may now be visited and studied inside/out at Aviodrome, Lelystad:

Boeing 747 Jumbo Jet

 

1670: METAL SPHERES IN THE SKY

800px-Magdeburg
[from Wikipedia]
The ancient peoples of Babylon and Egypt have presented us with many valuable scientific and technical innovations. In the fields of arithmetic, geometry and astronomy they made major contributions and in the art of erecting barehanded buildings from huge stone blocks they are unsurpassed to this day. But as far as I know they did not get involved in the theory of gases, nor did they build machines to conquer the sky.

The history of the balloon starts with Greece, where Archimedes (287-212 B.C.) formulated the principles of sinking, rising and floating and Hero (20? A.D.) invented the plunger type water pump. In our own seventeenth century there was Torricelli (1608-1647), who demonstrated the phenomenon of a vacuum by upending a long glass tube filled with mercury and Von Guericke (1602-1686) who adapted Hero’s pump to pump air. In this way he could evacuate his famous Magdeburger Half Spheres and demonstrate the surprising force exerted by the pressure of the column of air above us.

One result of all these experiments with vacuum was that the idea that air had weight became generally accepted.
Magdeburger balls emptied of their inside air were somewhat lighter than air-filled ones. Giovanni Alfonso Borelli (1608-1679, see my previous post), Italian physiologist, mathematician and friend of Galileo, speculated that if one would make very light spheres, for instance out of very thin copper plate and draw all the air from their insides, they would float in the air according to the law of Archimedes. Unfortunately spheres formed out of very thin plate would not be able to withstand the atmospheric pressure from outside and would be flattened by it.

Flying_boat
[from Wikipedia]
Undaunted by considerations like these the Jesuit father Lana de Terzi (1631-1687), who longed to go to heaven, made the same fatal flaw in his thinking. In his book ‘Prodromo Overo Saggio de Alcune’ of 1670 he describes a true ship of the air, an open gondola lifted by four copper spheres of almost 25 feet diameter that have no air inside. The ship is drawn forward by a span of twelve geese. De Lana was probably the first to be concerned that this invention, like all other man made instruments, could be misused for war. An airship such as this would make war even more brutal and horrifying than de Lana had experienced in his own lifetime. He therefore concluded that God would prevent the construction of this sort weapons. He certainly was he a naive optimist.

Of course his idea of the twelve geese was endearing. In flight it must have looked somewhat like the picture hereafter, which shows the Canadian Joseph Duff flying southward with a flock of cranes that have as much trust in their pilot as de Lana had in his god.

whoopcrane
[from link below]
Do read:

https://centennialjournalism.wordpress.com/2012/06/06/operation-migration-founder-still-flying-to-save-endangered-birds-whooping-cranes-not-canada-geese/

July 2015: CALGARY LAWN CHAIR BALLOONS

CalgaryLawnChair2015

On Sunday July 5th, while enjoying my time at the beach, Daniel Boria, age 26, was floating over the Calgary stampede grounds carried aloft  by 110 helium filled balloons while sitting in a lawn chair.
Our fascination with balloons goes back a long time, to Francisco Lana-Terzi [1631-1687] or maybe even earlier, to Giovanni Alfonso Borelli as decribed by that famous science (fiction) writer Isaac Asimov [1920-1992]:[1]

220px-Giovanni_Alfonso_Borelli

BORELLI,  Giovanni Alfonso
Italian mathematician and physiologist
Born: Naples, June 28, 1608
Died: Rome, December 31, 1679

“Borelli was a professor of mathematics and a friend of Galileo. His life, though not characterized by the controversies of his great friend, was not entirely smooth. In 1674 he had to leave Messina, the Sicilian city in which he was then teaching, and retire to Rome, where he remained under the protection of Chris­tina, former queen of Sweden. (This was the queen whose eccentric habits had brought on the death of Descartes [1596-1650]. She abdicted in 1654 and was received into the Roman Catholic Church the following year, after which she settled in Rome.)

Borelli corrected some of Galileo’s overconservation. Galileo [1564-1642] had neglected Kepler’s [1571-1630] elliptical or­bits, but now Horrocks [1618-1641] had extended them even to the moon, and Borelli rescued the ellipses, publici­zing and popularizing them.

He tried to extend the vague notions of Galileo and Kepler concerning the attractive forces between the sun and the planets, but was not successful. He tried also to account for the motion of Jupiter’s satellites by postulating an attractive force for Jupiter as well as for the sun. In this he (and Horrocks also at about this time) made a tentative step in the direction of universal gravitation, but the theory had to wait a generation for Newton [1642-1726].

Borelli suggested (under pseudonym) that comets tra­velled in parabolic orbits, passing through the solar system once and never returning. (The parabola, like the ellipse, was first studied by Apollonius [261-190 BC]. A parabola is an open curve something like a hairpin.) Any body following a parabolic path would approach the sun from infinite space, round it, and recede forever. Such an orbit would explain the erratic behavior of comets, without completely disrupting the orderliness of the universe.

Borelli understood the principle of the balloon, pointing out that a hollow copper sphere would be buoyant when evacuated, if it were thin enough, but that it would then collapse under air pressure.
It did not occur to him that collapse could be avoided if a lighter-than-air gas were used to fill the sphere as, in essence, the Montgolfier brothers [1740-1810 and 1745-1799] were to do a century and a half later.”
—————–
[1] Isac Asimov: Biographical Encoclopedia of Science and Technology (chronically ordered); 805 p. Avon Books, 1976

2015: ATERRISSAGE – HAPPY LANDING

Hold fast to dreams For if dreams die Life is a broken-winged bird That cannot fly. Hold fast to dreams For when dreams go Life is a barren field Frozen with snow. Langston Hughes
Huntington Beach,  California

The Ocean,

the beginning and the end.

479px-Maxwell_B-24
Consolidated B-24 Liberator

I wonder who will be coming to pick us up.

This big boy from San Diego?

It has a wonderful wing.  Its hull is from a flying boat.

It can’t land here. Just casing the place, I suppose.

Flugzeug Blohm & Voß BV 238 V1
Blohm & Voss BV-238 (100 tons)

The biggest one built in Germany, in Bremen, during the war.  It might be able to land here.

Rumor had it that Der Führer was planning to escape with it to Argentina.

I bet its designer, Dr. Vogt, never thought he would end up close by here, in Santa Barbara.

Martin M130
Glenn-Martin M-130 Clipper

The best one ever built.
It conquered  the Pacific

Latecoere 521 Flying Boat12A

As Boeing knows: never underestimate the French

H-4_Hercules_2
Hughes / Kaiser HK-1 Spruce Goose

This one is retired now in Oregon.

Pity it never really flew.

400px-Australian_pelican_in_flight

This one still flies.

May it outlive us all.

Au Revoir!

Ω

1934: A PLANE IS NOT A SHIP

Revolutionary Sikorsky S-42 (1934)
Revolutionary Sikorsky S-42 (1934)

Sikorsky’s factory in Stratford Connecticut completed its first S-42 airliner/flying boat in March 1934 and Igor Sikorsky took at the earliest opportunity the mail boat to Southampton to promote his revolutionary clean looking flying machine in the Old World. His first stop was London where he delivered a glowing lecture with epidiascope projections to the Royal Aeronautical Society. His new ship was fast and it could move passengers far. In fact in the years that followed, Pan American Airways bought ten of them and used them to conquer the Pacific Ocean. The British aviation bigwigs and tech wizards listened in polite astonishment. Igor gave a glowing account of his breakthrough in the design dilemmas that had for thirty years produced only ugly-looking mechanical flying things with a multitude of wings, struts and wires.

Ugly Short S-14 Sarafand (1932)
Ugly Short S-14 Sarafand (1932)

Sikorsky had now created a roomy airplane with a single sleek small wing and four beautifully mounted engines. It carried 12 passengers with ease over 2000 miles and it could alight gently at 65 mph on the tops of the rolling waves. Its cruising speed was 160 miles per hour and Igor repeatedly pointed out how this speed in combination with the high wing load made for a comfortable ride, relatively insensitive to wind gusts and sudden vertical up and down air drafts.

IGOR I. SIKORSKY (1889-1972)IGOR I. SIKORSKY    (1889-1972)

The British listened with polite amazement and suppressed skepticism. “We don’t really need speed”, said Mr. Horace Short, the builder of England’s famous double-breasted multi-wing lumbering patrol boats during the discussion afterwards.”When we need speed we’ll have Supermarine win the Schneider Cup or Messrs. de Havilland will build the Comet for winning the Melbourne race. We focus on other things.” He meant safety, a slow landing speed. And it must be said, his boats had an enviable safety record (but could not cross the ocean).
Mr. M.Langley inquired whether Mr. Sikorsky had used Imperial or US Gallons in his specifications. He apparently couldn’t believe the figures and the British ones were a good deal larger.
As to performance, Mr. W.O. Manning conceded frankly that Mr. Sikorsky had put the flying boats used by Imperial Airways completely out of date. He then proceeded to produce a global new design on the lines of the S-42 and showed its superiority.
Major R.E. Penney thought the secret of Mr. S.’s boat could be found in the enormous amount of detail work, the fairing up of the details so that the combined resistances had been reduced to an absolute minimum.

Phoebastria_albatrus (picture: Wiki)
Phoebastria_albatrus (picture: Wiki)

Mr. Scott-Hall mentioned in passing that albatrosses (the birds) had a large wing load but they had trouble getting themselves up in the air. And so there was a lot of back and forth talk about speed and small wings.
Until finally Major F. Green hit on the real issue: “Let’s not overlook the fact that a small wing saves a substantial amount of weight”. And here was of course the quintessence: instead of carrying wing, the airplane could now carry fuel and people. But even Igor did not seem to quite grasp the point. He came back to the subject of speed. “There is no doubt”, he stated, “that planes of great weight, capable of non-stop ocean flights, cruising between 150 to 200 miles per hour, can be designed at this time and be ready for service within two and a half to three years. Greater cruising speeds are possible, but the size of the earth does not warrant greater speeds. The progress of air transportation will benefit more if designers will give more attention to increased passenger comfort and ways and means to lower transportation costs rather than greater speed.”
Well now, would that really be possible Mr. Sikorsky? Are speed and economics independent quantities?
A cat is not a dog and a plane is not a ship.

for the full text of Igor Sikorsky’s lecture, click:  https://ritstaalman.files.wordpress.com/2014/12/sikorskya.pdf
see also Part III of Early Atlantic Airliners:  ATLAIRpart3
for books on the conquest of the Atlantic by air: http://www.Lindbergh-aviation.de atta12e9

1933: High Fashion in Wings

We exchanged some polite remarks while we heaved our bags in the rack above us and sought our proper place. We just fitted in our seats together: the blonde lady in sweater and jeans at the window, I in the middle and to my right the middle aged guy in safari jacket with long hair in a ponytail… Then we underwent in silence the start of the machine and the handout of some gorgeous delicacies like peanuts wrapped in tiny little plastic bags.

picture by Monica Staalman
picture by Monica Staalman

After a while the plane had climbed to cruising height and I bent forward to the left to look out of the window. I saw an elegant upward turned wing tip against the hard blue expansion of the universe and the faintly curved horizon of our planet.
“Isn’t it amazing?”  the lady smiled at me – “how we are sitting here crunching peanuts above the world?”
“It’s stunning,” I agreed. – “I was also observing the wing tip. There seems to be a fashion nowadays to bend them upward.”
“Well dear, it’s all about saving fuel you know. The proper shape may give you an extra 3 or 4 per cent range. It all counts with the present fuel prices.” (This conversation took place some years ago).
“How can that be?”
She explained: “The wings leave behind a corkscrew of whirling air, one at each side. It is an air vortex. In a way you may say that the airplane pulls the vortex forward. The bigger the vortex, the more energy it takes from the plane. With careful design of the wing tip the engineers try to make the generation of the vortex more gradual, less violent, see?” She looked at me and smiled.

this magnificent picture is from NASA, via Wiki. See note below
this magnificent picture is from NASA, via Wiki. See note below

“Yeah,” the man to my right added -“and these vortices are bloody dangerous for the little guy who is flying behind them. You better stay out of the wake of the big ones…”
And so it turned out to be a pleasant flight for all of us. The safari chap ordered a meal and offered me his dessert because he was, as he explained, a diabetic. The lady at the window knew more about airplanes than any of us. And I told them about Willy Fiedler who had built and flown a sailplane in 1933 with vertical wing tips and no fin at the tail. I even showed them a picture on my i-phone.
They were properly impressed.

We spent the rest of the flight with pleasurable chitchat. However, as always when flying, I lost my new friends at the Luggage Claim.  If we had traveled by steamship we would probably still be in contact now.

1933: Aka Flug Stuttgart F-1 Fledermaus, design Willy Fiedler

1933: Aka Flug Stuttgart F-1 Fledermaus, design Willy Fiedler

See also:

https://earlyflightera.com/from-fledermaus-to-polaris/

http://en.wikipedia.org/wiki/Wingtip_device

http://en.wikipedia.org/wiki/Wake_turbulence where you will find:

DescriptionAirplane vortex edit.jpg (see earlier picture)
Date  4 May 1990
English: Wake Vortex Study at Wallops Island
The air flow from the wing of this agricultural plane is made visible by a technique that uses colored smoke rising from the ground. The swirl at the wingtip traces the aircraft’s wake vortex, which exerts a powerful influence on the flow field behind the plane. Because of wake vortex, the Federal Aviation Administration (FAA) requires aircraft to maintain set distances behind each other when they land. A joint NASA-FAA program aimed at boosting airport capacity, however, is aimed at determining conditions under which planes may fly closer together. NASA researchers are studying wake vortex with a variety of tools, from supercomputers, to wind tunnels, to actual flight tests in research aircraft. Their goal is to fully understand the phenomenon, then use that knowledge to create an automated system that could predict changing wake vortex conditions at airports. Pilots already know, for example, that they have to worry less about wake vortex in rough weather because windy conditions cause them to dissipate more rapidly.